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A phenomenological model of capillarity, which accounts for the structure of the liquid-vapor layer, is
successively derived assuming that the entropy of a particle depends on the internal energy, the density, and the
gradient of the density. Employing classical thermodynamic principles in combination with the balance of
mass, momentum, and energy, a rheological expression for capillary stresses is obtained in terms of the free
energy of a liquid-vapor system. It is demonstrated that this model admits potential solutions, provided that
external forces are potential and the effects of viscous dissipation of energy and heat conductivity are ne-
glected. Moreover, it is shown that a variational principle can be formulated for potential flows, which gen-
eralizes Luke’s variational principle for free-boundary inviscid flow. This model can be applied to flows
involving a topological change of the capillary interface, such as those associated with the spontaneous growth,
coalescence and breakup of vaporous bubbles in a liquid.@S1063-651X~96!13011-7#

PACS number~s!: 47.10.1g

I. INTRODUCTION

The classical theory of capillarity, originated by Gibbs
@1#, is based on the simplifying assumption that the interfa-
cial layer between a liquid and its vapor has some predeter-
mined thickness, and that the two adjoining phases are ho-
mogeneous up to their common dividing surface. This
approach enables one to avoid the complex problem of the
structure of the liquid-vapor layer, and to apply powerful
methods of thermodynamics to the capillary interface, which
is actually treated as a geometric surface of zero thickness
@2,3#. It is conceivable that this is a good approximation of
the capillary interface at a length scale much greater than the
thickness of the interfacial layer. However, it is irrelevant in
a number of significant flows in which the thickness of the
interfacial layer becomes comparable to the characteristic
length scale. For instance, the flows associated with the
spontaneous growth of tiny vaporous bubbles in a liquid as
pressure drops down, as well as their coalescence and
breakup, cannot be adequately modeled without taking the
structure of the liquid-vapor layer into account.

There are many papers devoted to the phase-field model
of phase transitions, which incorporates the structure of the
crystal-melt layer. The classical model of phase transitions in
an incompressible medium at rest was proposed by Cahn and
Hilliard @4,5#, via allowing the free energy of a binary solu-
tion to depend both on the composition of the components
and on its gradient. This conception is in agreement with the
Landau-Ginzburg mean field theory@6#. The model is ex-
tended to time-dependent processes and applied to a number
of solidification problems involving growth of solid particles
from an initially homogeneous melt as temperature decreases
@7–16#. The most important stage of completing the set of
governing equations involves a mechanism of phase separa-
tion which is usually modeled by molecular diffusion de-
scribed by Fick’s law, with the chemical potential expressed

in terms of the variational derivative of the free energy with
respect to an order parameter, such as the composition of a
binary medium.

An analogous approach is applied to a binary incompress-
ible fluid @17,18#. In particular, a fourth-order diffusion equa-
tion derived in@10# is used to complete the model. Unfortu-
nately, this model is likely incapable of giving the classical
kinematical free-surface condition asymptotically as the
thickness of the interfacial layer tends to zero. Indeed, in the
limit the diffusion equation must be responsible for both the
structure of the interfacial layer and the kinematical free-
surface condition. In other words, the diffusion equation
does not prevent phase transitions between two fluids, and
hence Refs.@17,18# actually deal with miscible fluids.

In the present paper, a model of the capillarity of a com-
pressible viscous liquid is derived using simplea priori axi-
oms. The central postulate states that the entropy of a particle
of a pure medium at equilibrium depends not only on its
state, which can be described solely by density and internal
energy, but also on the state of its local environment@4#,
which is here modeled by the gradient of the density. In
other words, the density plays the role of an order parameter.
This is in agreement with the molecular theory of surface
tension, presented by Yang, Fleming, and Gibbs@19# for an
isothermal equilibrium of a compressible one-component
fluid ~that is, in the above paper the local free energy of a
system described by a classical Hamiltonian with a short-
ranged interaction potential is demonstrated to be a function
of temperature, density, and the squared gradient of the den-
sity; as a result, an expression for capillary stresses is ob-
tained from the Euler-Lagrange equation reflecting the gen-
eral statement of the condition for mechanical equilibrium of
a liquid-vapor system!. Then following the spirit of classical
thermodynamics, an expression for the internal energy and
entropy in terms of the free energy is immediately obtained
from the maximum entropy principle, whereas the density is
to satisfy a second-order equation involving the variational
derivative of the free energy. An entropy production equa-
tion, derived from the balance of mass, momentum, and en-
ergy, is used to find an expression for capillary stresses, us-
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ing the axiom that entropy can be produced only due to
viscous dissipation of energy and heat flux. Finally, the irre-
versible processes are modeled by classical Fourier and
Stokes laws. Of course, for pure fluid no diffusion mecha-
nism can be responsible for keeping the liquid-vapor layer
extremely thin. Instead, this process is simply driven by the
momentum equation with pressure and capillary stresses be-
ing related to the free energy. As a result, a consistent system
of governing equations is successively obtained, which is
shown to incorporate the classical equations of compressible
fluid as a partucular case. Furthermore, it is demonstrated
that an inviscid isothermal flow admits potential solutions
satisfying a variational principle. This principle is an exten-
sion of Luke’s variational principle for free-surface potential
flows @20#. In the general case of viscous flow, a linearized
model is used to describe localized density inhomogeneities.

II. MODEL DERIVATION

Let us consider a viscous compressible liquid of density
r. It is assumed thatr varies continuously with respect to a
position pointx and timet, so the liquid forms an interfacial
layer with its vapor. Let us denote velocity byv, the pressure
tensor~momentum flux! by P, the specific internal energy by
e, and the heat flux byq. In these variables the classical
conservation laws of mass, momentum, and energy take the
form

dr

dt
1r“•v50, ~1!

r
dv

dt
1“•P5rg, ~2!

r
de

dt
1“•q1P:D50, ~3!

whereg is the gravity,D is the deformation rate tensor de-
fined as the symmetric part of the tensor“v, and

d

dt
5

]

]t
1v•“

is the material time derivative. The centered dot denotes the
inner product. As is required by the conservation law of an-
gular momentum~momentum of momenta!, the pressure ten-
sorP must be symmetric. Note that2P is the stress tensor.

Let us assume that the specific entropys is a given func-
tion of specific internal energye, densityr, and immediate
environment which is modeled by“r. Actually, due to the
space isotropy, the entropy must be invariant with respect to
the group of rotations, and therefore

s5s~e,r,a!, ~4!

wherea5 1
2 u“ru2. In the absence of gravity, the maximum

entropy principle has the following formulation: maximize

E
D

rs~e,r,a!dD

under the constraints

E
D

re dD5E, E
D

r dD5M ,

whereD is a closed thermodynamic system of total energy
E and massM . Introducing Lagrange multipliers, the uncon-
ditional variational problem is to maximize the functional

E
D

rs~e,r,a!dD2
1

uEDre dD1
z

uEDr dD.

Note thatu is the absolute temperature, andz is the chemical
potential of the liquid-vapor system.

The Euler-Lagrange equations are specified to

]s~e,r,a!

]e
5
1

u
, ~5!

d$r@e2us~e,r,a!#%

dr
5z, ~6!

where

dF

dr
5

]F

]r
2“•S ]F

]a
“r D

is the variational derivative. In addition, the density has to
satisfy the boundary condition

r
]s~e,r,a!

]a

]r

]n
50 on ]D, ~7!

wheren is a normal vector. Let us introduce the Legendre
transform

f ~u,r,a!5min
e

@e2us~e,r,a!#,

which coincides with the specific free energy. If the function
s(e,r,a) is concave with respect toe, then Eq.~5! can be
inverted with respect toe to give the equilibrium values of
internal energy and entropy:

e5 f ~u,r,a!2u
] f ~u,r,a!

]u
, s52

] f ~u,r,a!

]u
. ~8!

It is worth stressing thatf (u,r,a) must be a concave func-
tion of u as a minimum of linear functions, and therefore the
specific heat capacity is positive,

c[
]e

]u
52u

]2f ~u,r,a!

]u2
.0.

Moreover, it is straightforward to check that Eq.~6! takes the
form

z5
d@r f ~u,r,a!#

dr
. ~9!
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Note that the intensive thermodynamic variablesu andz are
constant at equilibrium, whereas extensive variables, such as
density, internal energy, entropy, and free energy, may or
may not vary withinD.

In order to derive a consistent expression forP andq, let
us write

r
de

dt
5rF ]e

]u

du

dt
1

]e

]r

dr

dt
1

]e

]a
“r•

d

dt
~“r!G .

Using Eq.~1! and bearing in mind the identity

d

dt
~“r!5“S dr

dt D2“v•“r,

one derives the following form of Eq.~3!:

r
]e

]u

du

dt
1“•S q2r2“•v

]e

]a
“r D

1FP2r2
de

dr
G 2r

]e

]a
~“r ^“r2u“ru2G!G :D50 .

The symbol^ stands for the tensor product. Insofar as

]e

]u
5u

]s

]u
,

one obtains the entropy production equation

r
ds

dt
1“•F1u S q2r2“•v

] f

]a
“r D G

1
1

u2 S q2r2“•v
] f

]a
“r D •“u

1
1

u FP2r2
d f

dr
G 2r

] f

]a
~“r ^“r2u“ru2G!G :D50,

where f5e2us is the free energy. For an irreversible ther-
modynamic process, let us adopt the axiom that the entropy
of a particle can be produced only due to viscous dissipation
of energy and nonzero heat flux. This axiom immediately
gives the expressions

P5r2
d f

dr
G1r

] f

]a
~“r ^“r2u“ru2G!2l“•vG22mD,

~10!

q5r2“•v
] f

]a
“r2k“u . ~11!

Here, according to the Fourier and Stokes laws,l andm are,
respectively, the dilatational and shear coefficients of viscos-
ity, and k is the coefficient of heat conductivity. All these
coefficients are allowed to depend on temperatureu and den-
sity r. For simplicity, reciprocal coefficients are set to zero.

Thus the full set of governing equations takes the form

]r

]t
1“•~rv!50, ~12!

rS ]v

]t
1v•“vD5rg2“p

1“•~S1l“•vG12mD !, ~13!

r
]e

]u S ]u

]t
1v•“u D5F1“•~k“u!, ~14!

where

p5r2
d f

dr
,

S5r
] f

]a
~ u“ru2G2“r ^“r!,

F5l~“•v!212mD:D

1ruH r
]s

]r
“•v1

]s

]a
“r•@D:“r1“~r“•v!#J .

Note thatp plays the role of pressure,S is the tensor of
capillary stresses, andF is the dissipation function. Of
course, the internal energye(u,r,a) and entropy

s(u,r,a), wherea5 1
2 u“ru2, are given by Eqs.~8! in terms

of the free energyf (u,r,a).

III. EQUILIBRIUM OF A LIQUID-VAPOR SYSTEM

Let us analyze an equilibrium state of a liquid-vapor sys-
tem in a horizontal layer of thicknessL, assuming that den-
sity r varies in the direction of gravity only~flat interface!. If
v50 andu is constant, the force balance equation takes the
form

“•~pG2S!5rg.

There exists an equilibrium withr5r(x), wherex5x•eand
e is the unit vector of the direction ofg (g5ge). In this case,

S5r~x!
] f „u,r~x!, 12r8~x!2…

]a
ur8~x!u2~G2e^e! ,

and the equilibrium equation reduces to (0,x,L)

]p

]x
5rg, p5r2F ] f

]r
2

]

]x S ] f

]a

]r

]xD G . ~15!

This is a third-order equation which requires three boundary
conditions. In the view of Eq.~7!, one can put

r8~0!5r8~L !50, E
0

L

r~x!dx5M .

Assuming that

Ur ] f

]aY ] f

]r U!L2 ,
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it is straightforward to demonstrate that, under some mild
assumptions,r(x) rapidly varies in a narrow interfacial
layer, saya,x,a1h, where h!L. In this case, surface
tension has the expression

s~u!5E
0

L

r~x!
] f „u,r~x!, 12r8~x!2…

]a
ur8~x!u2dx

'E
a

a1h

r~x!
] f

]a
„u,r~x!, 12r8~x!2…ur8~x!u2dx.

Let us give another expression for surface tension in
terms of the excess quantities. Note that Eq.~9! can be writ-
ten as

z5 f1r
d f

dr
2

] f

]a
u“ru2,

or, equivalently,

r
] f

]a
u“ru25r~ f2z!1p.

Let us putg50, which implies thatp is constant. Sincez is
also constant at equilibrium, one derives the following ex-
pression for surface tension:

s5E
0

L

$r~x!@ f ~x!2z#1p%dx

'E
a

a1h

$r~x!@ f ~x!2z#1p%dx.

In other words, the surface tension is equal to the excess
Gibbs potential. It is straightforward to demonstrate that, as
h/L→0, this approximate expression transforms to the clas-
sical definition of surface tension as the excess free energy.
This is true even in the general case ofgÞ0, because pres-
sure is finite due to Eq.~15!. In this case, the surface tension
is positive if the excess free energy in the interfacial layer is
large enough@18#.

IV. POTENTIAL FLOW OF AN INVISCID
ISOTHERMAL FLUID

It is straightforward to check that

1

r
~“p2“•S!5“z2

] f

]u
“u, ~16!

wherez is given by Eq.~9!. Indeed, sinceS•“r50,

1

r
~“p2“•S!5“S pr D1

p

r2
“r2“•SSr D

5“S r
d f

dr D1
d f

dr
“r

2“•F ] f

]a
~ u“ru2G2“r ^“r!G

5“S r
d f

dr
2

] f

]a
u“ru2D1

] f

]r
“r1

] f

]a
“a

5“S f1r
d f

dr
2

] f

]a
u“ru2D2

] f

]u
“u

5“z2
] f

]u
“u ,

because“r•““r5“a. In particular, an isothermal revers-
ible flow of capillary fluid, with the effects of viscosity and
heat conductivity neglected, is governed by the following
system of equations:

]r

]t
1“•~rv!50, ~17!

]v

]t
1v•“•v5g2“Fd~r f !

dr G , ~18!

where f5 f (r, 12 u“ru2). For potential external force,
g52“P, the velocity field can be potential as well,

v52“w. ~19!

Sincew is determined byv apart from an arbitrary function
of time, one obtains the problem

]r

]t
5“•~r“w!, ~20!

]w

]t
5 1

2 u“wu21
d~r f !

dr
1P~x,t !, ~21!

which has to be solved in a regionD with the following
boundary conditions:

]r

]n
50,

]w

]n
50 on ]D. ~22!

The first condition stems from Eq.~7!, but the second one
reflects the impermeability of the rigid boundary of the flow
domain. This is a self-contained system of equations which
is capable of mimicking the effect of capillarity. Numerical
solution of Eqs.~20!–~22! will be the subject of a separate
paper.

Variational principle

Let us demonstrate that the above equations do admit a
variational principle which transforms to that derived in@20#.
Following @21#, let us write the classical Lagrange principle
with the contraint given by the continuity equation~17!,
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L~r,v,w!5E
0

TE
D
H r~ 1

2 uvu22 f2P!

2wF]r

]t
1“•~rv!G J dD dt,

wherew is here the Lagrange multiplier. The variation of the
above functional with respect tov andr immediately gives
Eqs. ~19! and ~21!. Upon inserting these expressions into
L, one finds

L5E
0

TE
D
S p2r

] f

]a
u“ru2DdDdt.

In the case of vanishing thickness of the capillary layer, the
liquid phase will occupy the regionD* (t),D with the free
liquid-vapor boundaryS(t), and the functional reduces to

L5E
0

TF E
D* ~ t !

pdD2E
S~ t !

s dSGdt.
This is the main result obtained in@20# and discussed in
detail in @21#.

V. LINEARIZED MODEL

Let us consider a steady-state solutionr5r0, v50, and
u5u0, which corresponds to equilibrium of a homogeneous
fluid occupying the whole space atg50. Linearizing Eqs.
~12!–~14! at this state gives

]r8

]t
1r0“•v50, ~23!

r0
]v

]t
5S r2

]s

]r D
0

“u82F ]

]r S r2
] f

]r D G
0

“r8

1S r2
] f

]a D
0

“~Dr8!1~l01m0!“~“•v!1m0Dv,

~24!

S r
]e

]u D
0

]u8

]t
5k0Du81S r2u

]s

]r D
0

“•v, ~25!

wherer8 andu8 are the perturbed quantities, and subscript
zero indicates the variables taken at the equilibrium state.
This problem can be reduced to variables (r8,h8,u8), where
h85“•v, namely

]r8

]t
1r0h850 , ~26!

r0
]h8

]t
5S r2

]s

]r D
0

Du82F ]

]r S r2
] f

]r D G
0

Dr8

1S r2
] f

]a D
0

D2r81~l012m0!Dh8, ~27!

S r
]e

]u D
0

]u8

]t
5k0Du81S r2u

]s

]r D
0

h8. ~28!

Let us analyze the disturbances into normal modes, and look
for solutions of the form

~r8,h8,u8!5~R,H,Q!eik•x2vt,

whereR, H, andQ are constant,k is a wave vector, andv is
the complex frequency. As a result, the dispersion equation
is obtained as

~v2x0uku2!@v222n0uku2v

1~b01g0uku2!uku2#1d0uku2v50,

where

x05S r
]e

]u D
0

21

k0, n05
l012m0

2r0
,

b05F ]

]r S r2
] f

]r D G
0

, g05S r2
] f

]a D
0

,

d05S ]e

]u D
0

21Fr2uS ]s

]r D 2G
0

.

It is straightforward to check that all the roots of this poly-
nomial have positive real parts ifukuÞ0 and

2n01x0.0, x0~b01g0uku2!.0,

~2n01x0!~2n0x01d0!12n0~b01g0uku2!.0.

It is clear that the only non-trivial condition of stability is

b01g0uku2.0,

because all the physical properties are positive except for
b0.

In particular, the stability condition is not valid if
b0,0. Adopting the principle of the exchange of stability
~i.e., a stationary pattern of motions prevails at the onset of
instability!, the critical wave vector is found atv50 as
uku5A2b0 /g0. It is straightforward to check that the sec-
ondary solution isr85Reik•x, h850, andu850. Therefore,
1/uku can be identified with the characteristic size of critical
nuclei. This situation occurs for the van der Waals gas@22#
below its critical state. Indeed, in variables rendered dimen-
sionless by their critical values, the specific free energy can
be expressed as

f5
8u

3
ln

r

32r
23r1cu~12 lnu!1

«2

2
uu“ru2,

where the parameter« is assumed to be small. In particular,

p5
8ur

32r
23r22«2r2“•~u“r!,

s5clnu2 8
3 ln

r

32r
2

«2

2
u“ru2,
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e5cu23r.

In this case, the entropy as a function of extensive thermo-
dynamic variables has the form

s5cln
e13r

c
2 8

3 ln
r

32r
2

«2

2
u“ru2.

The critical wave vector is determined by the condition

uku25
6

«2r0u0
F12

4u0
r0~32r0!

2G ,
the right-hand side of which is positive provided that

u0,
r0~32r0!

2

4
.

For example, ifr051, that corresponds to the critical state,
thenu0,1. This model is capable of describing equilibrium
density profiles and localized density inhomogeneities~criti-
cal nuclei!. As is expected, the size of critical nuclei has the
order of«. Also note that capillary forces do not arise in the
linearized model.

It is worth emphasizing that the surface tension of the van
der Waals gas is proportional to« and hence vanishes as
«→0 @23#. The same fact is revealed in@10# for a solidifi-

cation problem. In order to avoid this shortcoming, one has
to assume that the free energy in the interfacial layer is large
enough@11,17,18#.

VI. CONCLUSION

A model of capillarity of a one-component compressible
fluid is derived from the balance of mass, momentum, and
energy, completed with thermodynamic relations. The order
parameter of the fluid is its density, which varies continu-
ously in the liquid-vapor layer, and the fluid entropy depends
additionally on the gradient of density. Naturally, no diffu-
sion mechanism of phase separation is adopted for a one-
component fluid. Instead, the phase separation is driven by
the momentum equation, with pressure being the variational
derivative of free energy times density squared. The derived
model transforms to the classical model of motion of a com-
pressible viscous gas provided that any dependence of ther-

modynamic variables ona5 1
2 u“ru2 is suppressed, and con-

tains the classical variational principle for potential inviscid
isothermal flow.
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